4.7 Article

Vrn-D4 is a vernalization gene located on the centromeric region of chromosome 5D in hexaploid wheat

Journal

THEORETICAL AND APPLIED GENETICS
Volume 120, Issue 3, Pages 543-552

Publisher

SPRINGER
DOI: 10.1007/s00122-009-1174-3

Keywords

-

Funding

  1. United States Department of Agriculture Cooperative State Research, Education
  2. Extension Services National Research Initiative [2007-35301-17737, 2007-35301-18188]
  3. Ministry of Agriculture, Forestry and Fisheries of Japan [20780002]
  4. Japan Society for the Promotion of Science (JSPS)
  5. Grants-in-Aid for Scientific Research [20780002] Funding Source: KAKEN

Ask authors/readers for more resources

Natural variation in wheat requirement of long exposures to cold temperatures to accelerate flowering (vernalization) is mainly controlled by the Vrn-1, Vrn-2, Vrn-3, and Vrn-4 loci. The first three loci have been well characterized, but limited information is available for Vrn-4. So far, natural variation for Vrn-4 has been detected only in the D genome (Vrn-D4), and genetic stocks for this gene are available in Triple Dirk (TDF, hereafter). We detected heterogeneity in the Vrn-1 alleles present in different TDF stocks, which may explain inconsistencies among previous studies. A correct TDF seed stock from Japan carrying recessive vrn-A1, vrn-B1, and vrn-D1 alleles was crossed with three different winter cultivars to generate F-2 mapping populations. Most of the variation in flowering time in these three populations was controlled by a single locus, Vrn-D4, which was mapped within a 1.8 cM interval flanked by markers Xcfd78 and Xbarc205 in the centromeric region of chromosome 5D. A factorial ANOVA for heading time using Vrn-D4 alleles and vernalization as factors showed a significant interaction (P < 0.0001), which confirmed that the Vrn-D4 effect on flowering time is modulated by vernalization. Comparison of the different Triple Dirk stocks revealed that Vrn-B1, Vrn-D1, and Vrn-D4 all have a small residual response to vernalization, but Vrn-D4 differs from the other two in its response to short vernalization periods. The precise mapping and characterization of Vrn-D4 presented here represent a first step toward the positional cloning of this gene.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available