4.3 Article

Third-Generation Pleated Pneumatic Artificial Muscles for Robotic Applications: Development and Comparison with McKibben Muscle

Journal

ADVANCED ROBOTICS
Volume 26, Issue 11-12, Pages 1205-1227

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/01691864.2012.689722

Keywords

pneumatic artificial muscle; compliant actuation

Categories

Funding

  1. European Commission [231554]

Ask authors/readers for more resources

This paper introduces the third generation of Pleated Pneumatic Artificial Muscles (PPAM), which has been developed to simplify the production over the first and second prototype. This type of artificial muscle was developed to overcome dry friction and material deformation, which is present in the widely used McKibben muscle. The essence of the PPAM is its pleated membrane structure which enables the muscle to work at low pressures and at large contractions. In order to validate the new PPAM generation, it has been compared with the mathematical model and the previous generation. The new production process and the use of new materials introduce improvements such as 55% reduction in the actuator's weight, a higher reliability, a 75% reduction in the production time and PPAMs can now be produced in all sizes from 4 to 50 cm. This opens the possibility to commercialize this type of muscles so others can implement it. Furthermore, a comparison with experiments between PPAM and Festo McKibben muscles is discussed. Small PPAMs present similar force ranges and larger contractions than commercially available McKibben-like muscles. The use of series arrangements of PPAMs allows for large strokes and relatively small diameters at the same time and, since PPAM 3.0 is much more lightweight than the commong McKibben models made by Festo, it presents better force-to-mass and energy to mass ratios than Festo models. (C) 2012 Taylor & Francis and The Robotics Society of Japan

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available