4.7 Article

Surface hardness improvement of plasma-sprayed AISI 316L stainless steel coating by low-temperature plasma carburizing

Journal

ADVANCED POWDER TECHNOLOGY
Volume 24, Issue 5, Pages 818-823

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apt.2012.12.011

Keywords

Plasma carburizing; Plasma spraying; Austenitic stainless steel; Expanded austenite; Wear resistance

Funding

  1. KAKENHI [22560737]
  2. Grants-in-Aid for Scientific Research [22560737] Funding Source: KAKEN

Ask authors/readers for more resources

Low-temperature carburizing below 773 K of austenite stainless steel can produce expanded austenite, known as S-phase, where surface hardness is improved while corrosion resistance is retained. Plasma-sprayed austenitic AISI 316L stainless steel coatings were carburized at low temperatures to enhance wear resistance. Because the sprayed AISI 316L coatings include oxide layers synthesized in the air during the plasma spraying process, the oxide layers may restrict carbon diffusion. We found that the carbon content of the sprayed AISI 316L coatings by low-temperature carburizing was less than that of the AISI 316L steel plates; however, there was little difference in the thickness of the carburized layers. The Vickers hardness of the carburized AISI 316L spray coating was above 1000 HV and the amount of specific wear by dry sliding wear was improved by two orders of magnitude. We conclude that low-temperature plasma carburizing enabling the sprayed coatings to enhance the wear resistance to the level of carburized AISI 316L stainless steel plates. As for corrosion resistance in a 3.5 mass% NaCl solution, the carburized AISI 316L spray coating was slightly inferior to the as-sprayed AISI 316L coating. (C) 2013 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available