4.8 Review

Carbon-Based Photocathode Materials for Solar Hydrogen Production

Journal

ADVANCED MATERIALS
Volume 31, Issue 9, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201801446

Keywords

carbon; hydrogen (H-2); photocathodes; photoelectrochemical cells; water splitting

Funding

  1. European Union's Horizon 2020 research and innovation program [696656-GrapheneCore1, 785219-GrapheneCore2]

Ask authors/readers for more resources

Hydrogen is considered a promising environmentally friendly energy carrier for replacing traditional fossil fuels. In this context, photoelectro-chemical cells effectively convert solar energy directly to H-2 fuel by water photoelectrolysis, thereby monolitically combining the functions of both light harvesting and electrolysis. In such devices, photocathodes and photoanodes carry out the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER), respectively. Here, the focus is on photocathodes for HER, traditionally based on metal oxides, III-V group and II-VI group semiconductors, silicon, and copper-based chalcogenides as photoactive material. Recently, carbon-based materials have emerged as reliable alternatives to the aforementioned materials. A perspective on carbon-based photocathodes is provided here, critically analyzing recent research progress and outlining the major guidelines for the development of efficient and stable photocathode architectures. In particular, the functional role of charge-selective and protective layers, which enhance both the efficiency and the durability of the photocathodes, is discussed. An in-depth evaluation of the state-of-the-art fabrication of photocathodes through scalable, high-troughput, cost-effective methods is presented. The major aspects on the development of light-trapping nanostructured architectures are also addressed. Finally, the key challenges on future research directions in terms of potential performance and manufacturability of photocathodes are analyzed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available