4.8 Article

Molecular Understanding and Design of Zwitterionic Materials

Journal

ADVANCED MATERIALS
Volume 27, Issue 1, Pages 15-26

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201404059

Keywords

-

Funding

  1. National Science Foundation [CBET-1264477, CMMI-1301435, DMR-1264470]
  2. Office of Naval Research [N00014-14-1-0090]

Ask authors/readers for more resources

Zwitterionic materials have moieties possessing cationic and anionic groups. This molecular structure leads to unique properties that can be the solutions of various application problems. A typical example is that zwitterionic carboxybetaine (CB) and sulfobetaine (SB) materials resist nonspecific protein adsorption in complex media. Considering the vast number of cationic and anionic groups in the current chemical inventory, there are many possible structural variations of zwitterionic materials. The diversified structures provide the possibility to achieve many desired properties and urge a better understanding of zwitterionic materials to provide design principles. Molecular simulations and modeling are a versatile tool to understand the structure-property relationships of materials at the molecular level. This progress report summarizes recent simulation and modeling studies addressing two fundamental questions regarding zwitterionic materials and their applications as biomaterials. First, what are the differences between zwitterionic and nonionic materials? Second, what are the differences among zwitterionic materials? This report also demonstrates a molecular design of new protein-resistant zwitterionic moieties beyond conventional CB and SB based on design principles developed from these simulation studies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available