4.8 Article

Nanowires and Nanostructures that Grow like Polymer Molecules

Journal

ADVANCED MATERIALS
Volume 25, Issue 35, Pages 4829-4844

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201300850

Keywords

nanowires; polymers; crystallization; nanostructures; self-assembly

Funding

  1. Iowa State University of Science and Technology

Ask authors/readers for more resources

Unique properties (e.g., rubber elasticity, viscoelasticity, folding, reptation) determine the utility of polymer molecules and derive from their morphology (i.e., one-dimensional connectivity and large aspect ratios) and flexibility. Crystals do not display similar properties because they have smaller aspect ratios, they are rigid, and they are often too large and heavy to be colloidally stable. We argue, with the support of recent experimental studies, that these limitations are not fundamental and that they might be overcome by growth processes that mimic polymerization. Furthermore, we (i) discuss the similarities between crystallization and polymerization, (ii) critically review the existing experimental evidence of polymer-like growth kinetic and behavior in crystals and nanostructures, and (iii) propose heuristic guidelines for the synthesis of polymer-like crystals and assemblies. Understanding these anisotropic materials at the boundary between molecules and solids will determine whether we can confer the unique properties of polymer molecules to crystals, expanding them with topology, dynamics, and information and not just tuning them with size.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available