4.6 Article

Segmental Muscle Vibration Improves Walking in Chronic Stroke Patients With Foot Drop: A Randomized Controlled Trial

Journal

NEUROREHABILITATION AND NEURAL REPAIR
Volume 24, Issue 3, Pages 254-262

Publisher

SAGE PUBLICATIONS INC
DOI: 10.1177/1545968309349940

Keywords

segmental muscle vibration; gait; instrumental gait analysis; rehabilitation; chronic stroke

Ask authors/readers for more resources

Background. Studies have described the effects of segmental muscle vibration (SMV) on brain plasticity and corticomotor excitability. Information on the treatment-induced effects of SMV in stroke patients is, however, still limited. Objectives. To assess whether the application of SMV to ankle dorsiflexor muscles of chronic stroke patients can improve walking. Methods. Forty-four patients were randomly assigned to either an experimental group (EG) or a control group (CG) and underwent 12 sessions over 4 weeks of general physical therapy. Patients in the EG also received SMV at 120 Hz over the peroneus longus and tibialis anterior for 30 minutes at the end of each session. All the participants underwent pretreatment and posttreatment gait analysis assessments. Time-distance, kinematic, and surface electromyography (EMG) data were used as outcome measures. Results. A moderate improvement in mean gait speed, normal-side swing velocity, bilateral stride length, and normal-side toe-off percentage was observed only in the EG. A significant increase in bilateral ankle dorsiflexion angle at heel contact was associated with increased maximum ankle dorsiflexion and plantarflexion degrees during the swing phase on the paretic side after treatment in EG. Surface EMG during the swing phase revealed a significant increase in the activation of the tibialis anterior muscle on the paretic side in the posttreatment assessment in the EG. Conclusions. SMV added to general physical therapy may improve gait performance in patients with foot drop secondary to chronic stroke. The authors hypothesize that this may be due to the mechanical vibration stimulation, probably as a consequence of effective brain reorganization.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available