4.8 Article

Emergent Criticality in Complex Turing B-Type Atomic Switch Networks

Journal

ADVANCED MATERIALS
Volume 24, Issue 2, Pages 286-293

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201103053

Keywords

complex networks; neuromorphic computation; criticality; Turing; atomic switch

Funding

  1. Ministry of Education, Culture, Sports, Science, and Technology (MEXT) World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA)
  2. Defense Advanced Research Projects Agency (DARPA), US Department of Defense [BAA-09-63]

Ask authors/readers for more resources

Recent advances in the neuromorphic operation of atomic switches as individual synapse-like devices demonstrate the ability to process information with both short-term and long-term memorization in a single two terminal junction. Here it is shown that atomic switches can be self-assembled within a highly interconnected network of silver nanowires similar in structure to Turing's B-Type unorganized machine, originally proposed as a randomly connected network of NAND logic gates. In these experimental embodiments, complex networks of coupled atomic switches exhibit emergent criticality similar in nature to previously reported electrical activity of biological brains and neuron assemblies. Rapid fluctuations in electrical conductance display metastability and power law scaling of temporal correlation lengths that are attributed to dynamic reorganization of the interconnected electro-ionic network resulting from induced non-equilibrium thermodynamic instabilities. These collective properties indicate a potential utility for real-time, multi-input processing of distributed sensory data through reservoir computation. We propose these highly coupled, nonlinear electronic networks as an implementable hardware-based platform toward the creation of physically intelligent machines.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available