4.8 Article

Finding Auxetic Frameworks in Periodic Tessellations

Journal

ADVANCED MATERIALS
Volume 23, Issue 22-23, Pages 2669-2674

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201100268

Keywords

-

Funding

  1. Deutsche Forschungsgemeinschaft (DFG) [ME 1363/9]

Ask authors/readers for more resources

It appears that most models for micro-structured materials with auxetic deformations were found by clever intuition, possibly combined with optimization tools, rather than by systematic searches of existing structure archives. Here we review our recent approach of finding micro-structured materials with auxetic mechanisms within the vast repositories of planar tessellations. This approach has produced two previously unknown auxetic mechanisms, which have Poisson's ratio v(ss) = -1 when realized as a skeletal structure of stiff incompressible struts pivoting freely at common vertices. One of these, baptized Triangle-Square Wheels, has been produced as a linear-elastic cellular structure from Ti-6Al-4V alloy by selective electron beam melting. Its linear-elastic properties were measured by tensile experiments and yield an effective Poisson's ratio v(LE) approximate to -0.75, also in agreement with finite element modeling. The similarity between the Poisson's ratios v(SS) of the skeletal structure and v(LE) of the linear-elastic cellular structure emphasizes the fundamental role of geometry for deformation behavior, regardless of the mechanical details of the system. The approach of exploiting structure archives as candidate geometries for auxetic materials also applies to spatial networks and tessellations and can aid the quest for inherently three-dimensional auxetic mechanisms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available