4.8 Article

Fe, Cu-Coordinated ZIF-Derived Carbon Framework for Efficient Oxygen Reduction Reaction and Zinc-Air Batteries

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 28, Issue 39, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201802596

Keywords

Fe-Cu coordination; oxygen reduction reaction; zinc-air batteries

Funding

  1. National Natural Science Foundation of China [51701146, 51672204]
  2. National Science Foundation for Post-doctoral Scientists of China [2016M602292]
  3. [2017T100548]

Ask authors/readers for more resources

Zeolitic imidazole frameworks (ZIFs) offer rich platforms for rational design and construction of high-performance nonprecious-metal oxygen reduction reaction (ORR) catalysts owing to their flexibility, hierarchical porous structures, and high surface area. Herein, an Fe, Cu-coordinated ZIF-derived carbon framework (Cu@Fe-N-C) with a well-defined morphology of truncated rhombic dodecahedron is facilely prepared by introducing Fe2+ and Cu2+ during the growth of ZIF-8, followed by pyrolysis. The obtained Cu@Fe-N-C, with bimetallic active sites, large surface area, high nitrogen doping level, and conductive carbon frameworks, exhibits excellent ORR performance. It displays 50 mV higher half-wave potential (0.892 V) than that of Pt catalysts in an alkaline medium and comparable performance to Pt catalysts in an acidic medium. In addition, it also has excellent durability and methanol resistance ability in both acidic and alkaline solutions, which makes it one of the best Pt-free catalysts reported to date for ORR. Impressively, when being employed as a cathode catalyst in zinc-air batteries, Cu@Fe-N-C presents a higher peak power density of 92 mW cm(-2) than that of Pt/C (74 mW cm(-2)) as well as excellent durability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available