4.8 Article

Precursor Engineering for All-Inorganic CsPbI2Br Perovskite Solar Cells with 14.78% Efficiency

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 28, Issue 39, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201803269

Keywords

CsPbI2Br; DMSO adducts; inorganic perovskite solar cells; precursor; stability

Funding

  1. National Key Research and Development Program of China [2016YFA0202403]
  2. National Natural Science Foundation of China [61704101]
  3. Natural Science Foundation of Shaanxi Province [2017JM6020]
  4. Fundamental Research Funds for the Central Universities [GK201702003, GK201603053]
  5. 111 Project B [14041]
  6. Natural Science Foundation of Shaanxi Provincial Department of Education [2017KW-023]

Ask authors/readers for more resources

The optoelectronic properties of perovskite films are closely related to the film quality, so depositing dense, uniform, and stable perovskite films is crucial for fabricating high-performance perovskite solar cells (PSCs). CsPbI2Br perovskite, prized for its superb stability toward light soaking and thermal aging, has received a great deal of attention recently. However, the air instability and poor performance of CsPbI2Br PSCs are hindering its further progress. Here, an approach is reported for depositing high-quality CsPbI2Br films via the Lewis base adducts PbI2(DMSO) and PbBr2(DMSO) as precursors to slow the crystallization of the perovskite film. This process produces CsPbI2Br films with large-scale crystalline grains, flat surfaces, low defects, and long carrier lifetimes. More interestingly, PbI2(DMSO) and PbBr2(DMSO) adducts could significantly improve the stability of CsPbI2Br films in air. Using films prepared by this technique, a power conversion efficiency (PCE) of 14.78% is obtained in CsPbI2Br PSCs, which is the highest PCE value reported for CsPbI2Br-based PSCs to date. In addition, the PSCs based on DMSO adducts show an extended operational lifetime in air. These excellent performances indicate that preparing high-quality inorganic perovskite films by using DMSO adducts will be a potential method for improving the performance of other inorganic PSCs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available