4.8 Article

Myeloid-Derived Suppressor Cell Membrane-Coated Magnetic Nanoparticles for Cancer Theranostics by Inducing Macrophage Polarization and Synergizing Immunogenic Cell Death

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 28, Issue 37, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201801389

Keywords

immunogenic cell death; macrophage; magnetic resonance imaging; myeloid-derived suppressor cell; photothermal therapy

Funding

  1. National Natural Science Foundation of China (NFSC) [81672668, 81472528, 81472529]
  2. Fundamental Research Funds for the Central Universities [2042017kf0171]
  3. National Natural Science Foundation for Outstanding Youth Foundation [61722405]

Ask authors/readers for more resources

A major challenge for traditional cancer therapy, including surgical resection, chemoradiotherapy, and immunotherapy, is how to induce tumor cell death and leverage the host immune system at the same time. Here, a myeloid-derived suppressor cell (MDSC) membrane-coated iron oxide magnetic nanoparticle (MNP@MDSC) to overcome this conundrum for cancer therapy is developed. In this study, MNP@MDSC demonstrates its superior performance in immune evasion, active tumor-targeting, magnetic resonance imaging, and photothermal therapy (PTT)-induced tumor killing. Compared with red blood cell membrane-coated nanoparticles (MNPs@RBC) or naked MNPs, MNP@MDSCs are much more effective in active tumor-targeting, a beneficial property afforded by coating MNP with membranes from naturally occurring MDSC, thus converting the MNP into smart agents that like to accumulate in tumors as the source MDSCs. Once targeted to the tumor microenvironment, MNPs@MDSC can act as a PTT agents for enhanced antitumor response by inducing immunogenic cell death, reprogramming the tumor infiltrating macrophages, and reducing the tumor's metabolic activity. These benefits, in combination with the excellent biocompatibility and pharmacological kinetics characteristics, make MNP@MDSC a promising, multimodal agent for cancer theranostics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available