4.8 Article

Origami/Kirigami-Guided Morphing of Composite Sheets

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 28, Issue 44, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201802768

Keywords

Gaussian curvature; heat shrinkable polymers; origami/kirigami; shape morphing

Funding

  1. NSF under the Emerging Frontiers in Research and Innovation program [EFRI-1240438]

Ask authors/readers for more resources

Several strategies are recently exploited to transform 2D sheets into desired 3D structures. For example, soft materials can be morphed into 3D continuously curved structures by inducing nonhomogeneous strain. On the other hand, rigid materials can be folded, often by origami/kirigami-inspired approaches (i.e., flat sheets are folded along predesigned crease patterns). Here, for the first time, combining the two strategies, composite sheets are fabricated by embedding rigid origami/kirigami skeleton with creases into heat shrinkable polymer sheets to create novel 3D structures. Upon heating, shrinkage of the polymer sheets is constrained by the origami/kirigami patterns, giving rise to laterally nonuniform strain. As a result, Gaussian curvature of the composite sheets is changed, and flat sheets are transformed into 3D curved structures. A series of 3D structures are folded using this approach, including cones and truncated pyramids with different base shapes. Flat origami loops are folded into step structures. Tessellation of origami loops is transformed into 3D checkerboard pattern.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available