4.8 Article

Noncovalent Polymer-Gatekeeper in Mesoporous Silica Nanoparticles as a Targeted Drug Delivery Platform

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 25, Issue 6, Pages 957-965

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201402755

Keywords

-

Funding

  1. National Research Foundation of Korea (NRF) - Korean Government (Ministry of Education, Science and Technology [NRF-2011-35B-C00024]
  2. Ulsan National Institute of Science and Technology [1.130038]
  3. National Research Foundation of Korea [2013R1A1A2012960, 2015M1A2A2056560, 35B-2011-1-C00024, 2013R1A1A2061694] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

Selective targeting of tumor cells and release of drug molecules inside the tumor microenvironment can reduce the adverse side effects of traditional chemotherapeutics because of the lower dosages required. This can be achieved by using stimuli-responsive targeted drug delivery systems. In the present work, a robust and simple one-pot route is developed to synthesize polymer-gatekeeper mesoporous silica nanoparticles by noncovalent capping of the pores of drug-loaded nanocontainers with disulfide cross-linkable polymers. The method offers very high loading efficiency because chemical modification of the mesoporous nanoparticles is not required; thus, the large empty pore volume of pristine mesoporous silica nanoparticles is entirely available to encapsulate drug molecules. Furthermore, the polymer shell can be easily decorated with a targeting ligand for selective delivery to specific cancer cells by subsequent addition of the thiol-containing ligand molecule. The drug molecules loaded in the nanocontainers can be released by the degradation of the polymer shell in the intracellular reducing microenvironment, which consequentially induces cell death.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available