4.8 Article

Designed Autonomic Motion in Heterogeneous Belousov-Zhabotinsky (BZ)-Gelatin Composites by Synchronicity

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 23, Issue 22, Pages 2835-2842

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201202769

Keywords

active matter; actuators; hydrogels; additive manufacturing; oscillating reactions

Funding

  1. National Research Council Associateship Award at the Air Force Research Laboratory
  2. Air Force Office of Scientific Research

Ask authors/readers for more resources

Critical technologies from medicine to defense are highly dependent on advanced composite materials. Increasingly there is a greater demand for materials with expanded functionality. The state of the art includes a wide range of responsive composites capable of impressive structural feats such as externally triggered shape morphing. Here a different composite concept is presented, one in which a portion of the constituent materials feed off of ambient energy and dynamically couple to convert it to mechanical motion in a cooperative, biomimetic fashion. Using a recently developed self-oscillating gel based on gelatin and the oscillating Belousov-Zhabotinsky (BZ) reaction, a technique is demonstrated for producing continuous patterned heterogeneous BZ hydrogel composites capable of sustained autonomic function. The coupling between two adjacent reactive patches is demonstrated in an autonomic cantilever actuator which converts chemical energy into amplified mechanical motion. The design of heterogeneous BZ gels for motion using a basic finite element model is discussed. This work represents notable progress toward developing internally responsive, bio-inspired composite materials for constructing modular autonomic morphing structures and devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available