4.8 Article

Origin of Reduced Bimolecular Recombination in Blends of Conjugated Polymers and Fullerenes

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 23, Issue 34, Pages 4262-4268

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201203852

Keywords

organic photovoltaics (OPVs); bimolecular recombination; charge transfer states; charge delocalization

Funding

  1. Dutch Polymer Institute (DPI) [681]
  2. Swedish Energy Agency
  3. European Social Fund under the Global Grant measure

Ask authors/readers for more resources

Bimolecular charge carrier recombination in blends of a conjugated copolymer based on a thiophene and quinoxaline (TQ1) with a fullerene derivative ((6,6)-phenyl-C-71-butyric acidmethyl ester, PC71BM) is studied by two complementary techniques. TRMC (time-resolved microwave conductance) monitors the conductance of photogenerated mobile charge carriers locally on a timescale of nanoseconds, while using photo-CELIV (charge extraction by linearly increasing voltage) charge carrier dynamics are monitored on a macroscopic scale and over tens of microseconds. Despite these significant differences in the length and time scales, both techniques show a reduced Langevin recombination with a prefactor close to 0.05. For TQ1:PC71BM blends, the value is independent of temperature. On comparing TRMC data with electroluminescence measurements it is concluded that the encounter complex and the charge transfer state have very similar energetic properties. The value for annealed poly(3-hexylthiophene) (P3HT):(6,6)-phenyl-C-61-butyric acid methyl ester (PC61BM) is approximately 10(-4), while for blend systems containing an amorphous polymer values are close to 1. These large differences can be related to the extent of charge delocalization of opposite charges in an encounter complex. Insight is provided into factors governing the bimolecular recombination process, which forms a major loss mechanism limiting the efficiency of polymer solar cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available