4.8 Article

Homogeneous CoO on Graphene for Binder-Free and Ultralong-Life Lithium Ion Batteries

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 23, Issue 35, Pages 4345-4353

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201203777

Keywords

Li-ion batteries; anodes; binder-free electrodes; graphene

Funding

  1. Chinese Academy of Sciences
  2. National Program on Key Basic Research Project of China (973 Program) [2012CB215500]
  3. National Natural Science Foundation of China [21101147, 21203176]
  4. China Postdoctoral Science Foundation [2011M500624]
  5. Special Foundation of China Postdoctoral Science [2012T50293]

Ask authors/readers for more resources

Ultralong cycle life, high energy, and power density rechargeable lithium-ion batteries are crucial to the ever-increasing large-scale electric energy storage for renewable energy and sustainable road transport. However, the commercial graphite anode cannot perform this challenging task due to its low theoretical capacity and poor rate-capability performance. Metal oxides hold much higher capacity but still are plagued by low rate capability and serious capacity degradation. Here, a novel strategy is developed to prepare binder-free and mechanically robust CoO/graphene electrodes, wherein homogenous and full coating of -Co(OH)(2) nanosheets on graphene, through a novel electrostatic induced spread growth method, plays a key role. The combined advantages of large 2D surface and moderate inflexibility of the as-obtained -Co(OH)(2)/graphene hybrid enables its easy coating on Cu foil by a simple layer-by-layer stacking process. Devices made with these electrodes exhibit high rate capability over a temperature range from 0 to 55 degrees C and, most importantly, maintain excellent cycle stability up to 5000 cycles even at a high current density.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available