4.8 Article

Efficiency Enhancement of Organic Solar Cells by Using Shape-Dependent Broadband Plasmonic Absorption in Metallic Nanoparticles

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 23, Issue 21, Pages 2728-2735

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201202476

Keywords

organic solar cell; shape-dependent plasmonic effect; broadband absorption enhancement; metallic nanoparticles

Funding

  1. University Grant Council of the University of Hong Kong [10401466, 201111159062]
  2. General Research Fund [712010E, HKU711612E]
  3. Research Grants Council of Hong Kong Special Administrative Region, PR China
  4. CUHK Group [3110070]
  5. National Natural Science Foundation of China [61201122]

Ask authors/readers for more resources

It is been widely reported that plasmonic effects in metallic nanomaterials can enhance light trapping in organix solar cells (OSCs). However, typical nanoparticles (NP) of high quality (i.e., mono-dispersive) only possess a single resonant absorption peak, which inevitably limits the power conversion efficiency (PCE) enhancement to a narrow spectral range. Broadband plasmonic absorption is obviously highly desirable. In this paper, a combination of Ag nanomaterials of different shapes, including nanoparticles and nanoprisms, is proposed for this purpose. The nanomaterials are synthesized using a simple wet chemical method. Theoretical and experimental studies show that the origin of the observed PCE enhancement is the simultaneous excitation of many plasmonic low- and high-order resonances modes, which are material-, shape-, size-, and polarization-dependent. Particularly for the Ag nanoprisms studied here, the high-order resonances result in higher contribution than low-order resonances to the absorption enhancement of OSCs through an improved overlap with the active material absorption spectrum. With the incorporation of the mixed nanomaterials into the active layer, a wide-band absorption improvement is demonstrated and the short-circuit photocurrent density (Jsc) improves by 17.91%. Finally, PCE is enhanced by 19.44% as compared to pre-optimized control OSCs. These results suggest a new approach to achieve higher overall enhancement through improving broadband absorption.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available