4.8 Article

Ruthenium Oxide Hydrogen Evolution Catalysis on Composite Cuprous Oxide Water-Splitting Photocathodes

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 24, Issue 3, Pages 303-311

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201301106

Keywords

cuprous oxide; ruthenium oxide; photocathodes; solar fuel; hydrogen generation; water splitting

Funding

  1. Swiss Federal Office for Energy (PECHouse Competence Center) [SI/500090-02]
  2. European Commission [227179]
  3. Energy Center at EPFL
  4. SNF
  5. NCCR MUST
  6. [FCT SFRH/BD/79207/2011]
  7. [PTDC/EQU-EQU/107990/2008]

Ask authors/readers for more resources

Photocathodes based on cuprous oxide (Cu2O) are promising materials for large scale and widespread solar fuel generation due to the abundance of copper, suitable bandgap, and favorable band alignments for reducing water and carbon dioxide. A protective overlayer is required to stabilize the Cu2O in aqueous media under illumination, and the interface between this overlayer and the catalyst nanoparticles was previously identified as a key source of instability. Here, the properties of the protective titanium dioxide overlayer ofcomposite cuprous oxide photocathodes are further investigated, as well as an oxide-based hydrogen evolution catalyst, ruthenium oxide (RuO2). The RuO2-catalyzed photoelectrodes exhibit much improved stability versus platinum nanoparticles, with 94% stability after 8 h of light-chopping chronoamperometry. Faradaic efficiencies of approximate to 100% are obtained as determined by measurement of the evolved hydrogen gas. The sustained photocurrents of close to 5 mA cm(-2) obtained with this electrode during the chronoamperometry measurement (at 0 V vs. the reversible hydrogen electrode, pH 5, and simulated 1 sun illumination) would correspond to greater than 6% solar-to-hydrogen conversion efficiency in a tandem photoelectrochemical cell, where the bias is provided by a photovoltaic device such as a dye-sensitized solar cell.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available