4.8 Article

Controllable Synthesis of a Monophase Nickel Phosphide/Carbon (Ni5P4/C) Composite Electrode via Wet-Chemistry and a Solid-State Reaction for the Anode in Lithium Secondary Batteries

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 22, Issue 18, Pages 3927-3935

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201102660

Keywords

nickel phosphide; core; shell structures; amorphous carbon; monophase materials; lithium-ion batteries

Funding

  1. Fundamental Research Funds for the Central Universities [2011QNA4006]
  2. Key Science and Technology Innovation Team of Zhejiang Province [2010R50013]

Ask authors/readers for more resources

A monophase nickel phosphide/carbon (Ni5P4/C) composite with a thin carbon shell is controllably synthesized via the two-step strategy of a wet-chemistry reaction and a solid-state reaction. In this fabrication, the further diffusion of phosphorus atoms in the carbon shell during the solid-state reaction can be responsible for a chemical transformation from a binary phase of Ni5P4-Ni2P to monophase Ni5P4. Galvanostatic charge-discharge measurements indicate that the Ni5P4/C composite exhibits a superior, high rate capacibility and good cycling stability. About 76.6% of the second capacity (644.1 mA h g-1) can be retained after 50 cycles at a 0.1 C rate. At a high rate of 3 C, the specific capacity of Ni5P4/C is still as high as 357.1 mA h g-1. Importantly, the amorphous carbon shell can enhance the conductivity of the composite and suppress the aggregation of the active particles, leading to their structure stability and reversibility during cycling. As is confirmed from X-ray-diffraction analysis, no evident microstructural changes occur upon cycling. These results reveal that highly crystalline Ni5P4/C is one of the most promising anode materials for lithium-ion batteries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available