4.8 Article

Dihydroazulene Photoswitch Operating in Sequential Tunneling Regime: Synthesis and Single-Molecule Junction Studies

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 22, Issue 20, Pages 4249-4258

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201200897

Keywords

charge transport; dihydroazulene; molecular electronics; photoswitch; Suzuki coupling

Funding

  1. European Community [213609]
  2. Danish Council for Independent Research \ Natural Sciences [10-082088]
  3. Swedish Research Council

Ask authors/readers for more resources

Molecular switches play a central role for the development of molecular electronics. In this work it is demonstrated that the reproducibility and robustness of a single-molecule dihydroazulene (DHA)/vinylheptafulvene (VHF) switch can be remarkably enhanced if the switching kernel is weakly coupled to electrodes so that the electron transport goes by sequential tunneling. To assure weak coupling, the DHA switching kernel is modified by incorporating p-MeSC6H4 end-groups. Molecules are prepared by Suzuki cross-couplings on suitable halogenated derivatives of DHA. The synthesis presents an expansion of our previously reported brominationeliminationcross-coupling protocol for functionalization of the DHA core. For all new derivatives the kinetics of DHA/VHF transition has been thoroughly studied in solution. The kinetics reveals the effect of sulfur end-groups on the thermal ring-closure of VHF. One derivative, incorporating a p-MeSC6H4 anchoring group in one end, has been placed in a silver nanogap. Conductance measurements justify that transport through both DHA (high resistivity) and VHF (low resistivity) forms goes by sequential tunneling. The switching is fairly reversible and reenterable; after more than 20 ON-OFF switchings, both DHA and VHF forms are still recognizable, albeit noticeably different from the original states.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available