4.8 Article

Engineering of Push-Pull Thiophene Dyes to Enhance Light Absorption and Modulate Charge Recombination in Mesoscopic Solar Cells

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 23, Issue 14, Pages 1846-1854

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201202562

Keywords

dye-sensitized solar cells; push-pull dye; thiophene; electron transfer; microstructures

Funding

  1. National Science Foundation of China [50973105, 51125015, 51103146, 21203175]
  2. National 973 Program [2011CBA00702]
  3. National 863 Program [2011AA050521]
  4. Key Scientific and Technological Program of Jilin Province [10ZDGG012]

Ask authors/readers for more resources

The elaborate selection of diverse -conjugated segments which bridge the electron donors and acceptors in organic push-pull dyes can not only tune the molecular energy-levels but also impact the interfacial energetics and kinetics of dye-sensitized solar cells (DSCs). In this paper, a series of triphenylamine-cyanoacrylic acid photosensitizers is reported with TT, EDOT-BT, EDOT-CPDT, and CPDT-EDOT (herein TT, EDOT, BT, and CPDT denote terthiophene, ethylenedioxythiophene, bithiophene, and cyclopentadithiophene, respectively) as the -linkers, and the dye-structure correlated photocurrent and photovoltage features of DSCs based on a cobalt electrolyte are scrutinized via analyzing light absorption and multichannel charge transfer kinetics. Both stepwise incorporation of more electron-rich blocks and rational modulation of connection order of dissimilar segments can result in a negative movement of ground-state redox potential and a red-shift of the absorption peak. While these styles of reducing energy-gap do not exert too much influence on the electron injection from photoexcited dye molecules to titania, the dyestuff employing the EDOT-BT linker presents a faster interfacial charge recombination and a slower dye regeneration, accounting for its inferior cell efficiency of 5.3% compared to that of 9.4% at the AM1.5G conditions achieved by the CPDT-EDOT dye.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available