4.8 Article

Large AuAg Alloy Nanoparticles Synthesized in Organic Media Using a One-Pot Reaction: Their Applications for High-Performance Bulk Heterojunction Solar Cells

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 22, Issue 19, Pages 3975-3984

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201200218

Keywords

AuAg alloys; alloy nanoparticles; surface plasmons; solar cells; light trapping

Funding

  1. National Science Council
  2. Ministry of Economic Affairs of Taiwan [NSC 100-2119-M-002-008]

Ask authors/readers for more resources

A one-pot synthesis of large size and high quality AuAg alloy nanoparticles (NPs) with well controlled compositions via hot organic media is demonstrated. Amid the synthesis, complexation between trioctylphosphine (TOP) and metal precursors is found, which slows down the rate of nucleation and leads to the growth of large-size AuAg nanoalloys. The wavelength and relative intensities of the resulting plasmon bands are readily fine-tuned during the synthetic process using different Au/Ag precursors molar ratios. In the polymer solar cells, a key step in achieving high efficiency is the utilization of 1% Au11Ag89 alloy NPs embedded in the active layer to promote the power conversion efficiency (PCE) up to 4.73%, which outperforms the reference device based on the control standard device of poly(3-hexylthiophene) (P3HT):phenyl-C61-butyric acid methyl ester (PC61BM) under identical conditions. Corresponding increases in short-circuit current density (Jsc), open-circuit voltage (Voc), fill factor (FF), and incident photon-to-current efficiency (IPCE) enable 31% PCE improvement due to the enhancement of the light-trapping and the improvement of charge transport in the active layer. The findings advance the fundamental understanding and point to the superiority of Au11Ag89 nanoalloys as a promising metallic additive over Au, Ag, and Au28Ag72 alloy NPs to boost the solar cell performance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available