4.8 Article

Efficiency Enhanced Hybrid Solar Cells Using a Blend of Quantum Dots and Nanorods

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 22, Issue 2, Pages 397-404

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201101809

Keywords

hybrid solar cells; quantum dots; nanorods; nanocrystals

Funding

  1. Federal Ministry of Education (BMBF) of Germany

Ask authors/readers for more resources

The cell performance of organic-inorganic hybrid photovoltaic devices based on CdSe nanocrystals and the semiconducting polymer poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT) is strongly dependent on the applied polymer-to-nanocrystal loading ratio and the annealing temperature. It is shown here that higher temperatures for the thermal annealing step have a beneficial impact on the nanocrystal phase by forming extended agglomerates necessary for electron percolation to enhance the short-circuit current. However, there is a concomitant reduction of the open-circuit voltage, which arises from energy-level alterations of the organic and the inorganic component. Based on quantum dots and PCPDTBT, we present an optimized organicinorganic hybrid system utilizing an annealing temperature of 210 degrees C, which provides a maximum power conversion efficiency of 2.8%. Further improvement is obtained by blending nanocrystals of two different shapes to compose a favorable n-type network. The blend of spherical quantum dots and elongated nanorods results in a well-interconnected pathway for electrons within the p-type polmer matrix, yielding maximum efficiencies of 3.6% under simulated AM 1.5 illumination.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available