4.8 Article

Evolution of Nanoporous Pt-Fe Alloy Nanowires by Dealloying and their Catalytic Property for Oxygen Reduction Reaction

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 21, Issue 17, Pages 3357-3362

Publisher

WILEY-BLACKWELL
DOI: 10.1002/adfm.201100723

Keywords

-

Funding

  1. NSF (USA) [DMR-0801402]

Ask authors/readers for more resources

The short life and high cost of carbon-supported Pt nanoparticle catalysts (Pt/C) are two main problems with proton exchange membrane fuel cells. Porous Pt alloy nanowires have more durability and catalytic activity than Pt/C. Dealloying is a facile way to make nanoporous Pt. However, the process of porosity formation is difficult to control. In this paper, electrospinning and chemical dealloying techniques are used to make long, thin and yet nanoporous Pt-Fe alloy nanowires. The evolution of nanoporosity is observed and studied. It is found that non-uniform composition in the precursor PtFe(5) alloy nanowires helps the formation of nanoporous structure. The overall wire diameter is about 10-20 nm and the ligament diameter only 2-3 nm. These porous long nanowires interweave to form a self-supporting network with a high specific activity, 2.3 times that of conventional Pt/C catalysts, and also have better durability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available