4.8 Article

High-Energy Al/CuO Nanocomposites Obtained by DNA-Directed Assembly

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 22, Issue 2, Pages 323-329

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201100763

Keywords

DNA; self-assembly; nanoenergetic materials; nanoparticles; cupper oxide; aluminium

Funding

  1. French Defence Agency (DGA)

Ask authors/readers for more resources

Over the next few years, it is expected that new, energetic, multifunctional materials will be engineered. There is a need for new methods to assemble such materials from manufactured nanopowders. In this article, we demonstrate a DNA-directed assembly procedure to produce highly energetic nanocomposites by assembling Al and CuO nanoparticles into micrometer-sized particles of an Al/CuO nanocomposite, which has exquisite energetic performance in comparison with its physically mixed Al/CuO counterparts. Using 80 nm Al nanoparticles, the heat of reaction and the onset temperature are 1.8 kJ g-1 and 410 degrees C, respectively. This experimental achievement relies on the development of simple and reliable protocols to disperse and sort metallic and metal oxide nanopowders in aqueous solution and the establishment of specific DNA surface-modification processes for Al and CuO nanoparticles. Overall, our work, which shows that DNA can be used as a structural material to assemble Al/Al, CuO/CuO and Al/CuO composite materials, opens a route for molecular engineering of the material on the nanoscale.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available