4.8 Article

Temperature-Resolved Local and Macroscopic Charge Carrier Transport in Thin P3HT Layers

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 20, Issue 14, Pages 2286-2295

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.200902273

Keywords

-

Funding

  1. Deutsche Forschungsgemeinschaft [1121]

Ask authors/readers for more resources

Previous investigations of the field-effect mobility in poly(3-hexylthiophene) (P3HT) layers revealed a strong dependence on molecular weight (MW), which was shown to be closely related to layer morphology. Here, charge carrier mobilities of two P3HT MW fractions (medium-MW: M-n = 7 200 g mol(-1); high-MW: M-n = 27 000 g mol(-1)) are probed as a function of temperature at a local and a macroscopic length scale, using pulse-radiolysis time-resolved microwave conductivity (PR-TRMC) and organic field-effect transistor measurements, respectively. In contrast to the macroscopic transport properties, the local intra-grain mobility depends only weakly on MW (being in the order of 10(-2) cm(2) V-1 s(-1)) and being thermally activated below the melting temperature for both fractions. The striking differences of charge transport at both length scales are related to the heterogeneity of the layer morphology. The quantitative analysis of temperature-dependent UV/Vis absorption spectra according to a model of F. C. Spano reveals that a substantial amount of disordered material is present in these P3HT layers. Moreover, the analysis predicts that aggregates in medium-MW P3HT undergo a pre-melting significantly below the actual melting temperature. The results suggest that macroscopic charge transport in samples of short-chain P3HT is strongly inhibited by the presence of disordered domains, while in high-MW P3HT the low-mobility disordered zones are bridged via inter-crystalline molecular connections.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available