4.8 Article

Enhanced-Light-Harvesting Amphiphilic Ruthenium Dye for Efficient Solid-State Dye-Sensitized Solar Cells

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 20, Issue 11, Pages 1821-1826

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.200902396

Keywords

-

Funding

  1. Swiss National Science Foundation
  2. National Key Scientific Program [2007CB936700]

Ask authors/readers for more resources

A ruthenium sensitizer (coded C101, NaRu (4,4'-bis(5-hexylthiophen-2-yl)-2,2'-bipyridine) (4-carboxylic acid-4'-caboxylate-2,2'-bipyridine) (NCS)(2)) containing a hexylthiophene-conjugated bipyridyl group as an ancillary ligand is presented for use in solid-state dye-sensitized solar cells (SSDSCs). The high molar. extinction coefficient of this dye is advantageous compared to the widely used Z907 dye, (NaRu (4-carboxylic acid-4'-carboxylate) (4,4'-dinonyl-2,2'-bipyridine) (NCS)(2)). In combination with an organic hole-transporting material (spiro-MeOTAD, 2,2',7,7'-tetrakis-(N,N-di-p-methoxyphenylamine) 9, 9'-spirobifluorene), the C101 sensitizer exhibits an excellent power-conversion efficiency of 4.5% under AM 1.5 solar (100 mW cm(-2)) irradiation in a SSDSC. From electronic-absorption, transient-photovoltage-decay, and impedance measurements it is inferred that extending the pi-conjugation of spectator ligands induces an enhanced light harvesting and retards the charge recombination, thus favoring the photovoltaic performance of a SSDSC.,

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available