4.8 Article

High-Nanofiller-Content Graphene Oxide-Polymer Nanocomposites via Vacuum-Assisted Self-Assembly

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 20, Issue 19, Pages 3322-3329

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201000723

Keywords

-

Funding

  1. United States NSF [DMR-0520513, CHE-0936924, NIRT-0404291]

Ask authors/readers for more resources

Highly ordered, homogeneous polymer nanocomposites of layered graphene oxide are prepared using a vacuum-assisted self-assembly (VASA) technique. In VASA, all components (nanofiller and polymer) are pre-mixed prior to assembly under a flow, making it compatible with either hydrophilic poly(vinyl alcohol) (PVA) or hydrophobic poly(methyl methacrylate) (PM MA) for the preparation of composites with over 50 wt% filler. This process is complimentary to layer-by-layer assembly, where the assembling components are required to interact strongly (e.g., via Coulombic attraction). The nanosheets within the VASA-assembled composites exhibit a high degree of order with tunable intersheet spacing, depending on the polymer content. Graphene oxide-PVA nanocomposites, prepared from water, exhibit greatly improved modulus values in comparison to films of either pure PVA or pure graphene oxide. Modulus values for graphene oxide PM MA nanocomposites, prepared from dimethylformamide, are intermediate to those of the pure components. The differences in structure, modulus, and strength can be attributed to the gallery composition, specifically the hydrogen bonding ability of the intercalating species

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available