4.8 Article

Photoinduced Degradation of Polymer and Polymer-Fullerene Active Layers: Experiment and Theory

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 20, Issue 20, Pages 3476-3483

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201001079

Keywords

-

Funding

  1. Plextronics, Inc through a Collaborative Research and Development Agreement
  2. U.S. Department of Energy [DE-AC36-08GO28308]
  3. National Renewable Energy Laboratory

Ask authors/readers for more resources

As organic photovoltaic efficiencies steadily improve, understanding degradation pathways becomes increasingly important. In this paper, the stability under prolonged illumination of a prototypical polymer: fullerene active layer is studied without the complications introduced by additional layers and interfaces in complete devices. Combining contactless photoconductivity with spectroscopy, structural characterization at the molecular and film level, and quantum chemical calculations, the mechanism of photoinduced degradation in bulk heterojunctions of poly (3-hexylthiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM) is studied. Bare films are subjected to four conditions for 1000 h with either constant illumination or dark and either ambient or inert atmosphere. All samples are found to be intrinsically stable for 1000+ h under inert conditions, in contrast to complete devices. While PCBM stabilizes P3HT films exposed to air, its fullerene cage is found to undergo a series of oxidations that are responsible for the deterioration of the photoconductivity of the material. Quantum chemical calculations show that PCBM oxides have deeper LUMO levels than pristine PCBM and therefore act as traps for electrons in the PCBM domains.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available