4.5 Article

DIFFUSION-LIMITED TUMOUR GROWTH: SIMULATIONS AND ANALYSIS

Journal

MATHEMATICAL BIOSCIENCES AND ENGINEERING
Volume 7, Issue 2, Pages 385-400

Publisher

AMER INST MATHEMATICAL SCIENCES
DOI: 10.3934/mbe.2010.7.385

Keywords

Diffusion-limited growth; Tumour morphology

Funding

  1. U.S. National Cancer Institute [U54 CA 113007]

Ask authors/readers for more resources

The morphology of solid tumours is known to be affected by the background oxygen concentration of the tissue in which the tumour grows, and both computational and experimental studies have suggested that branched tumour morphology in low oxygen concentration is caused by diffusion-limited growth. In this paper we present a simple hybrid cellular automaton model of solid tumour growth aimed at investigating this phenomenon. Simulation results show that for high consumption rates (or equivalently low oxygen concentrations) the tumours exhibit branched morphologies, but more importantly the simplicity of the model allows for an analytic approach to the problem. By applying a steady-state assumption we derive an approximate solution of the oxygen equation, which closely matches the simulation results. Further, we derive a dispersion relation which reveals that the average branch width in the tumour depends on the width of the active rim, and that a smaller active rim gives rise to thinner branches. Comparison between the prediction of the stability analysis and the results from the simulations shows good agreement between theory and simulation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available