4.8 Article

Antireflective Nanoparticle Arrays Enhance the Efficiency of Silicon Solar Cells

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 20, Issue 18, Pages 3064-3075

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201000678

Keywords

-

Funding

  1. National Science Council, Taiwan [NSC-97-2221-E-002-046-MY3, NSC-98-2623-E-002-001-ET]

Ask authors/readers for more resources

In this study, the phenomenon of light trapping in Si solar cells coated with metal (Au) and dielectric (TiO2, SiO2) nanoparticles (NPs) is systematically investigated. In contrast to previous reports, herein it is proposed that the photocurrent enhancement of solar cells should be attributed to the limited antireflection ability of the Au NP arrays. In other words, the Au NP arrays might not enhance the absorption of the active layer in cells when no light is reflected from the air-substrate interface. Therefore, the Au NPs are replaced with dielectric NPs, which possess lower extinction coefficients, and then the antireflection property of the TiO2 NP arrays is optimized. A simple, rapid, and cheap solution-based method is used to prepare close-packed TiO2 NP films on Si solar cells; these devices exhibit a uniform and remarkable increase (ca. 30%) in their photocurrents. To the best of the authors' knowledge, this uniform photocurrent enhancement is greater than those obtained from previously reported metal and dielectric NP-enhanced Si wafer-based solar cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available