4.8 Article

Selective Defect-Patching of Zeolite Membranes Using Chemical Liquid Deposition at Organic/Aqueous Interfaces

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 18, Issue 21, Pages 3434-3443

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.200800054

Keywords

-

Funding

  1. National Natural Science Foundation of China [20636030, 20776100]
  2. Program of Introducing Talents of Discipline to Universities, China [B06006]

Ask authors/readers for more resources

The elimination of possible defects is indispensable in making zeolite membranes popular in process industries. A novel counter-diffusion chemical liquid deposition (CLD) technique is proposed and developed for selective defect-patching of zeolite membranes. Dodecyltrimethoxysilane (DMS) is employed as the silane coupling agent, forming a protective layer on the membrane surface so that intracrystalline pores can be kept intact in the subsequent reparation step. By using tetraethoxy orthosilicate (TEOS) and (3-chloropropyl)triethoxysilane (3CP-TES), co-hydrolysis and co-condensation at the organic/aqueous interface fabricate the silsesquioxane/silicate hybrid on macro-, meso- and even microdefects. The silicalite-1 membrane before and after reparation is characterized using contact-angle measurements, Fourier transform IR spectroscopy, and electron probe microanalysis. Permporometry is conducted to study the pore-size distribution of the membrane before and after reparation. It is found that the silsesquioxane/silicate hybrid is only deposited at the pore-mouth of the defects, and the defects can be plugged to less than 1.3 nm pores after patching. After reparation, the separation factor of a 50150 n/i-butane-gas mixture through the membrane can be increased to 35.8 from 4.4, and the separation factor of a CO(2)/N(2) gas mixture through the membrane can be increased to around 15 from 1, while keeping the two-thirds CO(2) permeation flux of the synthesized membrane.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available