4.8 Article

Intramolecular dipole coupling and depolarization in self-assembled monolayers

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 18, Issue 15, Pages 2228-2236

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.200701305

Keywords

-

Funding

  1. EPSRC [GR/S80103/01]
  2. Engineering and Physical Sciences Research Council [GR/S80103/01] Funding Source: researchfish

Ask authors/readers for more resources

Quantum mechanical and classical atomistic computational methods are used to simulate the chain-length dependence of depolarization effects in S(CH2)(n-1)CH3 and S(CH2)(n-1)COOH self-assembled monolayers on gold (111) surface. These calculations show that due to weak cooperative effects, the electrostatic properties of alkanethiol monolayers are well described by the gas phase dipole moments of the molecules. However, depolarization in monolayers with the molecules carrying head- and tail-group dipoles, such as COOH-terminated monolayers, strongly depends on the degree of intramolecular dipole coupling. Thus the electrostatic properties of self-assembled monolayers can be engineered by changing the length of the aliphatic spacer between the polar groups. The transition from strong to weak coupling regime was found to be accompanied by the change in the sign of the asymptotic value of electrostatic potential above the surface of the monolayers and hence in the sign of the metal work function change. Therefore, the use of weakly polarizable spacers between the polar groups inside the molecules forming the SAM is beneficial for accessing a wider range of work-function changes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available