4.8 Article

Effect of Oligothienyl Chain Length on Tuning the Solar Cell Performance in Fluorene-Based Polyplatinynes

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 18, Issue 18, Pages 2824-2833

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.200800439

Keywords

-

Funding

  1. Hong Kong Research Grants Council (HKBU) [202607P]
  2. Hong Kong Baptist University [FRG/06-07/11-63]
  3. National Natural Science Foundation of China [20671033]
  4. Strategic Research Theme
  5. University Development Fund
  6. Seed Funding Grant
  7. University of Hong Kong

Ask authors/readers for more resources

A series of solution-processable and strongly, visible-fight absorbing polyplatinynes containing oligothienyl-fluorene ring hybrids were synthesized and characterized. These rigid-rod organometallic materials are soluble in polar organic solvents and show intense absorptions in the visible spectral region, rendering them excellent candidates for bulk heterojunction polymer solar cells. The photovoltaic. behavior depends significantly on the number of thienyl rings along the polymer chain, and some of these polymer solar cells show high power conversion efficiencies (PCEs) of up to 2.9% and a peak external quantum efficiency to 83% under AM1.5 simulated solar illumination. The effect of oligothienyl chain length on improving the polymer solar cell efficiency and on their optical and charge transport properties is elucidated in detail. At the same blend ratio of 1:5, the light-harvesting capability and PCE increase markedly with increasing number of thienyl rings. The power dependencies of the solar cell parameters (including the short-circuit current density, open-circuit voltage, fill-factor, and PCE) were also examined. The present work opens up an attractive avenue to developing conjugated metallopolymers with broad and strong solar energy absorptions and tunable solar cell efficiency and supports the potential of metalated conjugated polymers for efficient power generation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available