4.8 Article

A Delivery System for Self-Healing Inorganic Films

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 18, Issue 22, Pages 3620-3629

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.200701470

Keywords

-

Funding

  1. Robert A. Welch Foundation

Ask authors/readers for more resources

Multilayer composites that utilize polymeric and brittle inorganic films are essential components for extending the lifetimes and exploiting the flexibility of many electronic devices. However, crack formation within the brittle inorganic layers that arise from defects as well as the flexing of these multilayer composite materials allows the influx of atmospheric water, a major source of device degradation. Thus, a composite material that call initiate self-healing upon the influx of environmental water through defects or stress-induced cracks would find potential applications in multilayer composite materials for permeation barriers. In the present study, the reactive metal oxide precursor TiCl(4) is encapsulated within the pores of a degradable polymer, poly(lactic acid) (PLA). Electrospun PLA fibers are found to be reactive to atmospheric water leading to the hydrolysis of the degradable polymer shell and subsequent release of the reactive metal oxide precursor. Release of the reactive TiCl(4) from the pores results ill hydrolysis of the metal oxide precursor, forming solid titanium oxides at the surface of the fibers. The efficacy of this self-healing delivery system is also demonstrated by the integration of these reactive fibers in the polymer planarization layer, poly(methyl methacrylate), of a multilayer film, upon which an alumina barrier layer is deposited. The introduction of nanocracks in the alumina barrier layer lead to the release of the metal oxide precursor from the pores of the fibers and the formation of titanium dioxide nanoparticles within the crack and upon the thin film surface. In this study the first delivery system that may find utility for the self-healing of multilayer barrier films through the site-specific delivery of metal oxide nanoparticles through smart reactive composite fibers is established.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available