4.8 Article

Photopatternable conductive PDMS materials for microfabrication

Ask authors/readers for more resources

Conductive photodefinable polydimethylsiloxane (PDMS) composites that provide both high electrical conductivity and photopatternability have been developed. The photosensitive composite materials, which consist of a photosensitive component, a conductive filler, and a PDMS pre-polymer, can be used as a negative photoresist or a positive photoresist with an additional curing agent. A standard photolithographic approach has been used to fabricate conductive elastomeric microstructures. Feature sizes of 60 mu m in the positive photoresist and 10 mu m in the negative photoresist have been successfully achieved. Moreover, as the conductive filler, silver powders significantly improve the electrical conductivity of the PDMS polymer, but also provide enhanced mechanical and thermal properties as well as interesting biological properties. The combined electrical, mechanical, thermal, and biological properties along with photopatternability make the PDMS-Ag composite an excellent processable and structural material for various microfabrication applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available