4.4 Article

Added-Mass Effect in Modeling of Cilia-Based Devices for Microfluidic Systems

Publisher

ASME-AMER SOC MECHANICAL ENG
DOI: 10.1115/1.4000766

Keywords

-

Funding

  1. National Science Foundation [CMII 0624597]
  2. National Science Council of Taiwan [NSC 96-2221-E-006-245]

Ask authors/readers for more resources

This article shows that the added mass due to fluid-structure interaction significantly affects the vibrational dynamics of cilia-based (vibrating cantilever-type) devices for handling microscale fluid flows. Commonly, the hydrodynamic interaction between the cilia-based actuators and fluid is modeled as a drag force that results in damping of the cilia motion. Our main contribution is to show that such damping effects cannot explain the substantial reduction in the resonant-vibrational frequency of the cilia actuator operating in liquid when compared with the natural frequency of the cilia in air. It is shown that an added-mass approach (that accounts for the inertial loading of the fluid) can explain this reduction in the resonant-vibrational frequency when operating cantilever-type devices in liquids. Additionally, it is shown that the added-mass effect can explain why the cilia-vibration amplitude is not substantially reduced in a liquid by the hydrodynamic drag force. Thus, this article shows the need to model the added-mass effect, both theoretically and by using experimental results. [DOI: 10.1115/1.4000766]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available