4.6 Article

Morphological Differentiation of Neurons on Microtopographic Substrates Fabricated by Rolled-Up Nanotechnology

Journal

ADVANCED ENGINEERING MATERIALS
Volume 12, Issue 9, Pages B558-B564

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adem.201080023

Keywords

-

Funding

  1. Volkswagen Foundation [I/84 072]
  2. Germany/Hong Kong Joint Research Scheme [426/hk-PPP-cab]
  3. Wellcome Trust [077429/Z/05/Z]
  4. Biotechnology and Biological Sciences Research Council [BB/G00319X/1] Funding Source: researchfish
  5. BBSRC [BB/G00319X/1] Funding Source: UKRI

Ask authors/readers for more resources

Arrays of transparent rolled-up microtubes can easily be mass-produced using a combination of conventional photolithography, electron beam depositioning, and chemical etching techniques. Here, we culture primary mouse motor neurons and immortalised CAD cells, a cell line derived from the central nervous system, on various microtube substrates to investigate the influence of topographical surface features on the growth and differentiation behaviour of these cells. Our results indicate that the microtube chips not only support growth of both cell types but also provide a well-defined, geometrically confined 3D cell culture scaffold. Strikingly, our micropatterns act as a platform for axon guidance with protruding cell extensions aligning in the direction of the microtubes and forming complex square-shaped grid-like neurite networks. Our experiments open up a cost-efficient and bio-compatible way of analysing single cell behaviour in the context of advanced micro-/nanostructures with various biological applications ranging from neurite protection studies to cell sensor development.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available