4.8 Article

Chemically Crushed Wood Cellulose Fiber towards High-Performance Sodium-Ion Batteries

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 7, Issue 41, Pages 23291-23296

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.5b07583

Keywords

wood cellulose; sodium-ion batteries; carbon anode; high Coulombic efficiency; long life

Funding

  1. Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Basic Energy Sciences [DESC0001160]
  2. Air Force of Scientific Research (AFOSR) from Department of Defense (DOD) [FA95501310143]
  3. China Scholarship Council (CSC)

Ask authors/readers for more resources

Carbon materials have attracted great interest as an anode for sodium-ion batteries (SIBs) due to their high performance and low cost. Here, we studied natural wood fiber derived hard carbon anodes for SIBs considering the abundance and low cost of wood. We discovered that a thermal carbonization of wood fiber led to a porous carbon with a high specific surface area of 586 m(2) g(-1), while a pretreatment with 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) could effectively decrease it to 126 m(2) g(-1). When evaluating them as anodes for SIBs, we observed that the low surface area carbon resulted in a high initial Coulombic efficiency of 72% compared to 25% of the high surface area carbon. More importantly, the low surface area carbon exhibits an excellent cycling stability that a desodiation capacity of 196 mAh g(-1) can be delivered over 200 cycles at a current density of 100 mA g(-1), indicating a promising anode for low-cost SIBs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available