4.1 Article

Genome-wide DNA methylation analysis in alcohol dependence

Journal

ADDICTION BIOLOGY
Volume 18, Issue 2, Pages 392-403

Publisher

WILEY
DOI: 10.1111/adb.12037

Keywords

Alcohol dependence; CpG site; DNA methylation; methylation GeneChip; pathway analysis

Funding

  1. Fund for Talents with Innovation in Medical Science and Technology of Henan Province
  2. National Natural Science Foundation of China [81171261]
  3. State Key Program of National Natural Science of China [81130020]
  4. National Key Basic Research and Development Program [2009CB522007]
  5. Stanley Medical Research Institute [03T-459, 05T-726]

Ask authors/readers for more resources

Genetic, epigenetic, and environmental factors influence the development of alcohol dependence (AD). Recent studies have shown that DNA methylation markers in peripheral blood may serve as risk markers for AD. Yet a genome-wide epigenomic approach investigating the role of DNA methylation in AD has yet to be performed. We conducted a population-based, case-control study of genome-wide DNA methylation to determine if alterations in gene-specific methylation were associated with AD in a Chinese population. Using the Illumina Infinium Human Methylation27 BeadChip, we assessed gene-specific methylation in over 27000 CpG sites from DNA isolated from lymphocytes in 63 male AD in-patients and 65 male healthy controls. Using a multi-factorial statistical model, we observed differential methylation between cases and controls at multiple CpG sites with the majority of the methylated CpG sites being hypomethylated. Analyses with the online gene set analysis toolkit WebGestalt revealed that the genes of interest were enriched in multiple biological processes involved in AD development. Gene Ontology function annotation showed that stress, immune response and signal transduction were highly associated with AD. Further analysis by the Kyoto Encyclopedia of Genes and Genomes revealed associations with multiple pathways involved in metabolism through cytochrome P450, cytokinecytokine receptor interaction and calcium signaling. Associations with canonical pathways previously shown to be involved in AD were also observed, such as dehydrogenases 1A (ADH1A), ADH7, aldehyde dehydrogenases 3B2 (ALDH3B2) and cytochrome P450 2A13. We present evidence that alterations in DNA methylation may be associated with AD, which is consistent with epigenetic theory.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available