4.5 Review

Molecular mechanism of salicylic acid-induced abiotic stress tolerance in higher plants

Journal

ACTA PHYSIOLOGIAE PLANTARUM
Volume 36, Issue 9, Pages 2287-2297

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s11738-014-1603-z

Keywords

Salicylic acid; Abiotic stress; Tolerance; Molecular mechanism

Categories

Ask authors/readers for more resources

Salicylic acid (SA), a key signaling molecule in higher plants, has been found to play a role in the response to a diverse range of phytopathogens and is essential for the establishment of both local and systemic-acquired resistance. Recent studies have indicated that SA also plays an important role in abiotic stress-induced signaling, and studies on SA-modulated abiotic tolerance have mainly focused on the antioxidant capacity of plants by altering the activity of anti-oxidative enzymes. However, little information is available about the molecular mechanisms of SA-induced abiotic stress tolerance. Here, we review recent progress toward characterizing the SA-regulated genes and proteins, the SA signaling pathway, the connections and differences between SA-induced tolerances to biotic and abiotic stresses, and the interaction of SA with other plant hormones under conditions of abiotic stress. The future prospects related to molecular tolerance of SA in response to abiotic stresses are also further summarized.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available