4.5 Article

Calystegia soldanella: dune versus laboratory plants to highlight key adaptive physiological traits

Journal

ACTA PHYSIOLOGIAE PLANTARUM
Volume 35, Issue 4, Pages 1329-1336

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s11738-012-1173-x

Keywords

Antioxidant molecules and enzymes; Laboratory conditions; Dune environment; Leaf chemical analysis; Oxidative stress

Categories

Ask authors/readers for more resources

Coastal plants live in heterogeneous and potentially stressful environments in which multiple stress factors may coexist. Some of these constraints can induce oxidative stress with consequent damage to cell components and structures. To contrast oxidative damage plants have evolved antioxidant systems, including both enzymatic and non-enzymatic molecules. The aim of this study was to highlight main physiological traits evolved by plants to survive in coastal environment through a comparison of nutritional and physiological parameters between dune (DC) and laboratory-grown (LC) plants of Calystegia soldanella (L.), a typical dune plant. In comparison with laboratory plants, dune plants living on a soil with relatively low nutrient content, were characterised by lower total nitrogen, K+ and phosphate content and by lower K+/Na+, PO4 (2-)/Cl- and N/Cl- ratios. Pigment content was significantly higher in LC than in DC plants. Despite their higher hydrogen peroxide content and lipid peroxidation, dune plants had a membrane damage, assessed by the electrolytic conductivity method, not significantly different from that of LC plants. Phenol and ascorbate pools, glutathione reductase and catalase activities were significantly higher in dune than in laboratory plants. Although the stress level was high, coastal plants were well protected against oxidative damage and proline, phenols, ascorbate, glutathione reductase and catalase seemed to play a pivotal role in plant adaptation to the constraints of coastal environment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available