4.7 Article

Hydroxypyridinonate Complex Stability of Group (IV) Metals and Tetravalent f-Block Elements: The Key to the Next Generation of Chelating Agents for Radiopharmaceuticals

Journal

INORGANIC CHEMISTRY
Volume 54, Issue 7, Pages 3462-3468

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.inorgchem.5b00033

Keywords

-

Funding

  1. U.S. Department of Energy, Office of Science Early Career Research Program and Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division at the Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]

Ask authors/readers for more resources

The solution thermodynamics of the water-soluble complexes formed between 3,4,3-LI(1,2-HOPO) and Zr(IV) or Pu(IV) were investigated to establish the metal coordination properties of this octadentate chelating agent. Stability constants log beta(110) = 43.1 +/- 0.6 and 43.5 +/- 0.7 were determined for [Zr(IV)(3,4,3-LI(1,2-HOPO))] and [Pu(IV)(3,4,3-LI(1,2-HOPO))], respectively, by spectrophotometric competition titrations against Ce(IV). Such high thermodynamic stabilities not only confirm the unparalleled Pu(IV) affinity of 3,4,3-LI(1,2-HOPO) as a decorporation agent but also corroborate the great potential of hydroxypyridinonate ligands as new Zr-89-chelating platforms for immuno-PET applications. These experimental values are in excellent agreement with previous estimates and are discussed with respect to ionic radius and electronic configuration, in comparison with those of Ce(IV) and Th(IV). Furthermore, a liquid chromatography assay combined with mass spectrometric detection was developed to probe the separation of the neutral [M(IV)(3,4,3-LI(1,2-HOPO))] complex species (M = Zr, Ce, Th, and Pu), providing additional insight into the coordination differences between group IV and tetravalent f-block metals and on the role of d and f orbitals in bonding interactions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available