4.0 Article

Cardiomyopathy confers susceptibility to particulate matter-induced oxidative stress, vagal dominance, arrhythmia and pulmonary inflammation in heart failure-prone rats

Journal

INHALATION TOXICOLOGY
Volume 27, Issue 2, Pages 100-112

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.3109/08958378.2014.995387

Keywords

Air pollution; arrhythmia; autonomic; cardiovascular; electrocardiography; heart rate variability; particulate matter; rats

Categories

Funding

  1. U.S. EPA / UNC Toxicology [CR83515201-0]
  2. EPA-NHEERL / UNC-DESE Cooperative Training in Environmental Sciences Research [CR83323601]
  3. NIH [HL007118]

Ask authors/readers for more resources

Acute exposure to ambient fine particulate matter (PM2.5) is tied to cardiovascular morbidity and mortality, especially among those with prior cardiac injury. The mechanisms and pathophysiological events precipitating these outcomes remain poorly understood but may involve inflammation, oxidative stress, arrhythmia and autonomic nervous system imbalance. Cardiomyopathy results from cardiac injury, is the leading cause of heart failure, and can be induced in heart failure-prone rats through sub-chronic infusion of isoproterenol (ISO). To test whether cardiomyopathy confers susceptibility to inhaled PM2.5 and can elucidate potential mechanisms, we investigated the cardiophysiologic, ventilatory, inflammatory and oxidative effects of a single nose-only inhalation of a metal-rich PM2.5 (580 mu g/m(3), 4 h) in ISO-pretreated (35 days similar to 1.0 mg/kg/day sc) rats. During the 5 days post-treatment, ISO-treated rats had decreased HR and BP and increased pre-ejection period (PEP, an inverse correlate of contractility) relative to saline-treated rats. Before inhalation exposure, ISO-pretreated rats had increased PR and ventricular repolarization time (QT) and heterogeneity (Tp-Te). Relative to clean air, PM2.5 further prolonged PR-interval and decreased systolic BP during inhalation exposure; increased tidal volume, expiratory time, heart rate variability (HRV) parameters of parasympathetic tone and atrioventricular block arrhythmias over the hours post-exposure; increased pulmonary neutrophils, macrophages and total antioxidant status one day postexposure; and decreased pulmonary glutathione peroxidase 8 weeks after exposure, with all effects occurring exclusively in ISO-pretreated rats but not saline-pretreated rats. Ultimately, our findings indicate that cardiomyopathy confers susceptibility to the oxidative, inflammatory, ventilatory, autonomic and arrhythmogenic effects of acute PM2.5 inhalation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available