4.6 Review

Papp-Lantos inclusions and the pathogenesis of multiple system atrophy: an update

Journal

ACTA NEUROPATHOLOGICA
Volume 119, Issue 6, Pages 657-667

Publisher

SPRINGER
DOI: 10.1007/s00401-010-0672-3

Keywords

Multiple system atrophy; Papp-Lantos inclusions; Aberrant alpha-synuclein; Glial cytoplasmic inclusions; Oligodendrogliopathy; Pathogenesis

Funding

  1. Society for the Promotion of Research in Experimental Neurology, Vienna, Austria

Ask authors/readers for more resources

Multiple systemic atrophy (MSA) is a progressive, adult-onset neurodegenerative disorder of undetermined aetiology characterized by a distinctive oligodendrogliopathy with argyrophilic glial cytoplasmic inclusions (GCIs) and selective neurodegeneration. GCIs or Papp-Lantos inclusions, described more than 20 years ago, are now accepted as the hallmarks for the definite neuropathological diagnosis of MSA and suggested to play a central role in the pathogenesis of this disorder. GCIs are composed of hyperphosphorylated alpha-synuclein (alpha Syn), ubiquitin, LRRK2 (leucin-rich repeat serine/threonine-protein) and many other proteins, suggesting that MSA represents an invariable synucleinopathy of non-neuronal type, a specific form of proteinopathies. The origin of alpha Syn deposition in GCIs is not yet fully understood, but recent findings of dysregulation in the metabolism of myelin basic protein (MBP) and p25 alpha, a central nervous system-specific protein, also called TPPP (tubulin polymerization promoting protein), strengthened the working model of MSA as a primary glial disorder and may explain frequent alterations of myelin in MSA. However, it is unknown whether these changes represent an early event or myelin dysregulation occurs further downstream in MSA pathogenesis. The association between polymorphisms at the SNCA gene locus and the risk for developing MSA also points to a primary role of alpha Syn in its pathogenesis, while in a MBP promoter-driven alpha Syn transgenic mouse model gliosis accompanied the neurodegenerative process originating in oligodendrocytes. Because alpha Syn represents a major component in both oligodendroglial and neuronal inclusions in MSA, some authors suggested both a primary oligodendrogliopathy and a neuronal synucleinopathy, but current biomolecular data and animal models support a crucial role of the Papp-Lantos inclusions and of aberrant alpha Syn accumulation as their main constituent, causing oligodendroglial pathology, myelin disruption and, finally, neuronal degeneration in MSA. The relationship between oligodendrocytes involved by Papp-Lantos inclusions and those in degenerating neurons in the course of MSA needs further elucidation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available