4.6 Article

Deletion of macrophage migration inhibitory factor attenuates neuronal death and promotes functional recovery after compression-induced spinal cord injury in mice

Journal

ACTA NEUROPATHOLOGICA
Volume 117, Issue 3, Pages 321-328

Publisher

SPRINGER
DOI: 10.1007/s00401-008-0476-x

Keywords

Macrophage migration inhibitory factor; Spinal cord injury; Glutamate; Apoptosis; Knockout mouse

Ask authors/readers for more resources

Macrophage migration inhibitory factor (MIF) is a multipotential protein that acts as a proinflammatory cytokine, a pituitary hormone, and a cell proliferation and migration factor. The objective of this study was to elucidate the role of MIF in spinal cord injury (SCI) using female MIF knockout (KO) mice. Mouse spinal cord compression injury was produced by application of a static load (T8 level, 20 g, 5 min). We analyzed the motor function of the hind limbs and performed histological examinations. Hind-limb function recovered significantly in the KO mice starting from three weeks after injury. Cresyl-violet staining revealed that the number of surviving neurons in the KO mice was significantly larger than that of WT mice six weeks after injury. Immunohistochemical analysis revealed that the number of NeuN/caspase-3-active, double-positive, apoptotic neurons in the KO mice was significantly smaller than that of the WT mice 24 and 72 h after SCI. These results were related to in-vitro studies showing increased resistance of cerebellar granular neurons from MIF-KO animals to glutamate neurotoxicity. These results suggest that MIF existence hinders neuronal survival after SCI. Suppression of MIF may attenuate detrimental secondary molecular responses of the injured spinal cord.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available