4.5 Article

Similarity Weighted Instance-based Learning for the Generation of Transition Potentials in Land Use Change Modeling

Journal

TRANSACTIONS IN GIS
Volume 14, Issue 5, Pages 569-580

Publisher

WILEY-BLACKWELL
DOI: 10.1111/j.1467-9671.2010.01226.x

Keywords

-

Categories

Ask authors/readers for more resources

Land use change models are increasingly being used to evaluate the effect of land change on climate and biodiversity and to generate scenarios of deforestation. Although many methods are available to model land transition potentials, they are usually not user-friendly and require the specification of many parameters, making the task difficult for decision makers not familiar with the tools, as well as making the process difficult to interpret. In this article we propose a simple method for modeling transition potentials. SimWeight is an instance-based learning algorithm based on the logic of the K-Nearest Neighbor algorithm. The method identifies the relevance of each driver variable and predicts the transition potential of locations given known instances of change. A case study was used to demonstrate and validate the method. Comparison of results with the Multi-Layer Perceptron neural network (MLP) suggests that SimWeight performs similarly in its capacity to predict transition potentials, without the need for complex parameters. Another advantage of SimWeight is that it is amenable to parallelization for deployment on a cloud computing platform.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available