4.7 Article

The discovery of a very cool, very nearby brown dwarf in the Galactic plane

Journal

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volume 408, Issue 1, Pages L56-L60

Publisher

WILEY-BLACKWELL
DOI: 10.1111/j.1745-3933.2010.00927.x

Keywords

surveys; brown dwarfs; stars: low mass

Funding

  1. ARC [DP0774000]
  2. Science and Technology Facilities Council [ST/G002622/1] Funding Source: researchfish
  3. STFC [ST/G002622/1] Funding Source: UKRI

Ask authors/readers for more resources

We report the discovery of a very cool, isolated brown dwarf, UGPS 0722-05, with the United Kingdom Infrared Telescope Deep Sky Survey (UKIDSS) Galactic Plane Survey. The near-infrared spectrum displays deeper H2O and CH4 troughs than the coolest known T dwarfs and an unidentified absorption feature at 1.275 mu m. We provisionally classify the object as a T10 dwarf but note that it may in future come to be regarded as the first example of a new spectral type. The distance is measured by trigonometric parallax as d = 4.1(-0.5)(+0.6) pc, making it the closest known isolated brown dwarf. With the aid of Spitzer/Infrared Array Camera (IRAC) we measure H - [4.5] = 4.71. It is the coolest brown dwarf presently known - the only known T dwarf that is redder in H - [4.5] is the peculiar T7.5 dwarf SDSS J1416+13B, which is thought to be warmer and more luminous than UGPS 0722-05. Our measurement of the luminosity, aided by Gemini/T-ReCS N-band photometry, is L = 9.2 +/- 3.1 x 10(-7) L-circle dot. Using a comparison with well-studied T8.5 and T9 dwarfs we deduce T-eff = 520 +/- 40 K. This is supported by predictions of the Saumon & Marley models. With apparent magnitude J = 16.52, UGPS 0722-05 is the brightest of the similar to 90 T dwarfs discovered by UKIDSS so far. It offers opportunities for future study via high-resolution near-infrared spectroscopy and spectroscopy in the thermal infrared.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available