4.8 Article

Three-Dimensional Heterostructures of MoS2 Nanosheets on Conducting MoO2 as an Efficient Electrocatalyst To Enhance Hydrogen Evolution Reaction

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 7, Issue 41, Pages 23328-23335

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.5b07960

Keywords

CVD growth; 3D heterostructures; MoS2 nanosheets; 3D MoO2 conductive core; electrocatalyst; hydrogen evolution reaction

Funding

  1. Ministry of Science and Technology (MOST) of Taiwan [MOST 103-2627-M-002-009, 103-2113-M-002-014-MY3]

Ask authors/readers for more resources

Molybdenum disulfide (MoS2) is a promising catalyst for hydrogen evolution reaction (HER) because of its unique nature to supply active sites in the reaction. However, the low density of active sites and their poor electrical conductivity have limited the performance of MoS2 in HER. In this work, we synthesized MoS2 nanosheets on three-dimensional (3D) conductive MoO2 via a two-step chemical vapor deposition (CVD) reaction. The 3D MoO2 structure can create structural disorders in MoS2 nanosheets (referred to as 3D MoS2/MoO2), which are responsible for providing the superior HER activity by exposing tremendous active sites of terminal disulfur of S-2(-2) (in MoS2) as well as the backbone conductive oxide layer (of MoO2) to facilitate an interfacial charge transport for the proton reduction. In addition, the MoS2 nanosheets could protect the inner MoO2 core from the acidic electrolyte in the HER. The high activity of the as-synthesized 3D MoS2/MoO2 hybrid material in HER is attributed to the small onset overpotential of 142 mV, a largest cathodic current density of 85 mA cm(-2), a low Tafel slope of 35.6 mV dec(-1), and robust electrochemical durability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available